Step of Proof: nil_member-variant
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
nil
member-variant
:
T
,
A
:Type,
x
:
T
. (
A
r
T
)
((
x
[])
False)
latex
by Unfold `l_member` 0 THEN Auto THEN All Reduce THEN ExRepD THEN Auto
latex
.
Definitions
(
x
l
)
,
P
Q
,
P
&
Q
,
P
Q
,
,
Type
,
s
=
t
,
l
[
i
]
,
[]
,
type
List
,
a
<
b
,
||
as
||
,
#$n
,
x
:
A
.
B
(
x
)
,
A
c
B
,
x
:
A
B
(
x
)
,
Void
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
{
x
:
A
|
B
(
x
)}
,
,
A
B
,
A
,
False
,
P
Q
,
t
T
Lemmas
nat
wf
,
length
wf2
,
select
wf
,
false
wf
origin